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A 32-GHz Microstrip Array Antenna for

Microspacecraft Application
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JPL/NASA is currently developing microspacecraft systems for fut ure deep space

applications. One of the frequency bands being investigated for microspacecraft is

the Ka-band (32 Gtlz), which can be used with smaller equipment and provides a

larger bandwidth. This article describes the successful development of a circularly

polarized microstrip array with 28 dBic of gain at 32 Gllz. This antenna, which is

thin, fiat, and small, can be surface-mounted onto the microspacecraft and, hence,

takes very little volume and mass of the spacecraft. Tile challenges in developing

this antenna are minimizing the microstrip antenna 's insertion toss and maintaining

a reasonable frequency bandwidth.

I. Introduction

JPL is currently considering the development of mi-

crospacecraft for future deep space missions in order to

meet NASA's goal of having small and inexpensive space-

craft. The microspacecraft, 1 having sizes on the order of

0.5 m, will certainly require components that are small

both in size and mass. One of the frequency bands under

investigation for use with microspacecraft is the Ka-band

(32 GHz). In this frequency range, components are smaller

and larger bandwidths can be achieved as compared with

a lower frequency range. A larger bandwidth will result in

a higher data rate.

z C. Salvo and C. Nunez, "Code R MicrospacecrMt Subsystem Tech-
nology Task," JPL Interoffice Memorandum 3132-92-099 (inter-
nal document), Jet Propulsion Laboratory, Pasadena, California,
March 23, 1992.

In microspacecraft development, antennas are one of

the major components that warrant, attention since they

generally require significant amounts of real estate and

mass. Conventional antennas such as horns and parabolic

reflectors, although efficient radiators, are generally bulky

in size and large in mass. As a result, three different types

of flat antennas with very thin profiles have been proposed

for the microspacecraft. Since they are flat, the antennas

can be surface-mounted onto the spacecraft without ad-

ditional supporting structures, such as those needed for

curved parabolic reflectors. Therefore, they require very

little volume and mass.

The first type is the microstrip array [1], in which many

printed microstrip patch elements are combined by mi-

crostrip transmission lines. Due to the relatively high in-
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sertion loss that generally exists in microstrip transmission

lines, the microstrip array cannot be very large; otherwise
the antenna will be very inefficient. At Ka-band, the mi-

crostrip array will have an acceptable insertion loss if its

aperture dimension is less than 15 cm. The second type

is the planar slotted waveguide array [2], which is gener-

ally bulky at low microwave frequencies, but which can be

made low profile with a small mass at high frequencies,

such as Ka-band. Because the slotted waveguide encoun-

ters very little insertion loss, its aperture size can be large.

The upper limit of its size is governed by its metallic mass.

At Ka-band, a reasonable dimension range for the planar

slotted waveguide array is from 5 to 35 cm.

For antennas with dimensions larger than 35 cm, a third

type of flat antenna, called the microstrip reflectarray or

flat reflector [3], can be used. This antenna has similari-
ties to the conventional parabolic reflector, in which both

a feed and a reflecting surface are needed. However, for

the microstrip reflectarray, the reflecting surface can be

flat rather than curved. Many identical but isolated mi-

crostrip patches (which are not connected to each other by

power dividers) with phase delay lines of different lengths
are printed on this flat reflecting surface. It is these phase

delay lines that will cause the reradiated energy originating
from the feed to become coherent in the far field. With-

out power-division transmission lines, the insertion loss of
the antenna will not increase as the size of the antenna in-

creases. Consequently, the aperture size of the reflectarray

can be very large while still maintaining good efficiency.

Since they are flat, these reflecting surfaces can be surface-

mounted onto the spacecraft without additional structure

support, such as is needed for a curved parabola. There-

fore, the spacecraft can have a lower mass and a lower

volume by utilizing the reflectarray antenna.

Due to limited resources in fiscal year 1993, only the

first type of antenna, the microstrip array, was developed.

The other two types of antennas are planned to be devel-

oped in the following years. This article documents the de-

velopment of the Ka-band microstrip array, which must be
circularly polarized with 28 dBic of peak gain. The array

employs a series feed technique [4] for its power-division

transmission lines in order to reduce insertion loss, and it

uses sequentially arranged [5] elements for its subarrays to

improve the quality of the circular polarization (CP).

II. Antenna Requirements

The antenna technologies studied here are intended for

a series of future JPL/NASA microspacecraft applications.
The set of antenna requirements generated here, however,

are for a particular application called Asteroid Comet Mi-

crospacecraft Explorer (ACME-II). 2 The ACME-II space-

craft, as illustrated in Fig. l, has a hexagonal shape with
dimensions on the order of 0.5 m. The bottom of the space-

craft is used for the propulsion adapter unit and does not

have enough room for the antenna. The top is allocated

for an optical camera, louvers, etc., and also does not have

adequate space for the antenna. The only likely location
for the antenna is on one of the six side panels, which

are allocated for the solar arrays. It seems appropriate

to mount a small and flat array antenna flush with the

solar array. The antenna requirements for the ACME-II

spacecraft are given in Table 1.

The antenna gain of 28 dBic is set for the microspace-
craft's near-Earth encounter with an asteroid or a comet

at a range of approximately 1 AU. This gain yields an

antenna beamwidth of about 5 deg. With this relatively

wide beamwidth, fine beam pointing at the Earth is not

required. Therefore, an automatic antenna tracking ca-

pability is not required; rather, a fixed broadside beam is

adequate for the antenna system. Coarse antenna point-

ing is to be done by the spacecraft's onboard system, such
as the star tracker. The challenge in developing the pro-

posed microstrip array antenna is to achieve the 28 dBic

of gain with a minimal amount of insertion loss over a

relatively wide bandwidth of 1 GHz. In other words, the

efficiency of the microstrip array may need some atten-

tion. Low profile, small mass, and low cost are certainly
the attractive features of the microstrip array antenna.

Other antennas, such as horns and parabolic reflectors,

although known to be efficient radiators, may have very
poor efficiency in terms of antenna volume and mass for

microspacecraft applications. For example, for a horn an-

tenna to provide 28 dBic of gain, it will need approximately

9 cm x 9 cm of aperture with 20 cm of length. A significant

amount of the spacecraft's volume is needed to accommo-

date the horn antenna since the spacecraft's dimension is

only 50 cm across. Consequently, the horn antenna will
have a volume at least 50 times and a mass at least l0

times as large as the microstrip array. To summarize, for
microspacecraft applications, the salient physical features

of the microstrip array can compensate for the antenna's

relative inefficiency at Ka-band.

III. Antenna Development Background

To develop a high-gain microstrip array antenna, three

major steps are generally required: the single patch el-

2Ibid.
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ement development, a building-block subarray develop-
ment, and the full array development. Since the mierostrip

patch is a narrow-band device (generally less than three-

percent bandwidth), the development of the single patch is
necessary to ensure its correct resonant frequency, polar-

ization purity, bandwidth, etc. Currently, no mathemat-

ical tool can directly design a complete microstrip array

to operate at the desired frequency. Although some math-

ematical tools are very accurate, one cannot ensure that
the fabrication tolerance and the manufacturer's material

specifications are all within the required accuracy. For

example, the dielectric constant of the substrate is gen-

erally 1 percent off from the manufacturer's specification,

which can cause a similar percentage of change in reso-
nant frequency. The second step is the development of

the building-block subarray, which means that the full ar-

ray consists of many identical subarrays. This subarray
should be developed prior to the full array to ensure good

circular polarization and to minimize overall development

risk. Once the single subarray is developed, many of these

identical subarrays can then be combined by microstrip

transmission lines to form the final array.

A. Single-Patch Element Development

For an array to generate CP, its element is generally

required to be circularly polarized. However, when the ra-

diation efficiency is not a concern, a CP array can be com-

posed of linearly polarized (LP) elements [6,7]. Since the

radiation efficiency is of concern, the patch element must

be circularly polarized. There are basically two techniques

for a single microstrip to generate CP. One is to have a

square or circular patch excited by two orthogonally lo-
cated feeds in time quadrature, as shown in Fig. 2(a). The

other is to have a truncated-corner square patch, as shown

in Fig. 2(b), excited by a single feed. Since the insertion
loss of a microstrip array is mostly incurred in the mi-

crostrip power-distribution transmission lines, the lengths
and complexity of these transmission lines should be mini-

mized. As a result, the truncated-corner, single-feed patch

rather than the orthogonally fed patch is selected for the

array. There are several other techniques [8] to generate

CP by a single-feed patch, such as using a tilted slot at

the center of a square patch and a circular patch with two

indented edges.

All these single-feed CP methods work as a result of the

fields underneath the patch being perturbed by the small
truncations. The perturbation splits the field into two or-

thogonal modes that are degenerate in frequency and in-
phase quadrature. The amount of perturbation must be

just right so that two orthogonally polarized fields with

equal amplitudes and orthogonal phases can be formed.

Consequently, the CP bandwidth is very narrow and gen-

erally is less than 1 percent. This narrow bandwidth will
cause the resonant CP frequency to be very sensitive to

fabrication tolerance, temperature change, etc. One tech-

nique for increasing the CP bandwidth is to arrange four

neighboring elements sequentially in orientations and in
phases. This technique is discussed in the next subsec-
tion.

The design of the truncated-corner square patch is as-

sisted by both the cavity modal theory [9] and the vari-

ational method [10]. The cavity modal theory, used here

to design an unperturbed square patch, assumes that the
fields underneath the patch can be expanded in terms of

trigonometric functions (modal functions). By solving for
the unknown coefficients of these modal functions through

known boundary conditions, the resonant frequency and

input impedance can be determined. The amount of cor-

ner truncation for CP generation is then determined by

the variational method with the simple close-form equa-

tion given below [10]:

( s,)f' = f 1+_-_ (1)

with

S' 1

s 2Q

where S' is the sum of the two truncated areas, S is the

area of the unperturbed square patch, f is the resonant

frequency of the unperturbed patch, f' is the frequency

for the optimal axial ratio, and Q is the quality factor of

the unperturbed patch.

The quality factor, Q, is a function of the substrate

dielectric constant, thickness, and loss tangent. It can be

obtained simply through a curve given in [10] or calculated

from [8]. It can also be determined through the impedance

bandwidth (in percent for a 2:1 voltage standing wave ra-

tio [VSWR]) either calculated or measured for the unper-
turbed patch by the following simple relationship [11]:

1

q = vztv a ,a,_ )'-_''an-w''t'" (2)

With the above formulations, the truncated-corner square

patch was designed with the following dimensions (see
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Fig. 2): a = 0.038 cm, b = 0.297 cm, the relative dielectric
constant = 2.2, and the dielectric thickness = 0.025 cm.

The measured input return loss at 32.0 GIIz is -21 dB,

which corresponds to a VSWR of 1.22:1. The measured

axial ratio is best at 32 GHz but with a relatively large

magnitude of 3 dB. This relatively large axial ratio is the
result of the narrow-band characteristic with a high sensi-

tivity to fabrication tolerance and the manufacturer's ma-

terial specification tolerance. Nevertheless, it is expected

that this large axial ratio can be reduced by the sequen-

tially arranged subarray technique to be discussed in the
next subsection. A photograph of this single patch with

truncated corners is shown in Fig. 3, where the patch is

fed by an impedance-matched microstrip transmission line
and an end-launched OS-50 coax connector. The printed
antenna circuit is etched on Duroid 5880 substrate ma-

terial. Due to its extremely thin profile, the antenna is

mounted on a brass plate for mechanical support.

B. Four-Element Subarray Development

It has been known that the CP quality and bandwidth

can be improved if four elements, each being a narrow-

band CP element, can be arranged sequentially [5,6] in

orientation and in phase, as shown in Fig. 4. The four

elements are arranged in 0-, 90-, 180-, and 270-deg fash-

ion to achieve symmetry and to cancel undesirable higher-

order modes (explained in [6]) and, thus, to achieve purer

polarization. Figure 5 presents the photograph of the se-

quentially arranged four-element subarray with each sin-

gle element having dimensions identical to those presented

in Fig. 3. The element spacing is 0.73 free-space wave-
length, and the required differential phases between ele-

ments are achieved by designing transmission lines of dif-

ferent lengths. A vertically launched OS-50 coax connec-
tor is used to feed the microstrip-transmission-line power-

dividing circuit. The measured input return loss at 32 GHz
is -17.4 dB (VSWR = 1.31:1). Its 1.5:1 VSWR bandwidth
is about 0.5 GHz. The radiation pattern measured with

a spinning dipole is shown in Fig. 6, where an axial ratio
of less than 0.25 dB is demonstrated in the broadside di-

rection. This axial ratio is significantly better than that

of the single element. This four-element subarray is used
as the building block in the full array, where all the sub-

arrays are identical and are combined by microstrip power

distributing lines, as discussed in the next section.

IV. Full Array Design

To provide the required antenna gain of 28 dBic, an

aperture size of approximately 10 cm x 10 cm is needed at

32 GHz. The number of radiating elements needed is about

200. When combining such a relatively large number of el-

ements by microstrip transmission lines at Ka-band, the

insertion loss becomes significant. One technique to mini-

mize this insertion loss is to employ the series-feed method

in which all the four-element subarrays are combined se-

rially by the power distributing circuit. This series-feed

method is illustrated in Fig. 7. The input/output coax

connector, located at the center of the array, feeds the mi-

crostrip transmission line with a two-way power division

that splits the power parallel to the left and right identical

halves. Each half array is then fed serially in columns by

the microstrip line. The upper and lower halves of the ar-

ray are fed in parallel at the array's horizontal center line
and then fed serially at each subarray location.

Figure 8 illustrates the difference between the series-
feed and the parallel-feed techniques for a four-element ar-

ray having uniform power distribution. A series-fed array

means that a certain amount of power is used to feed the

first element; then a certain amount from the remaining

power is used to feed the second element at a delayed time;
and this continues until the fourth element is reached. At

the fourth element, only one-quarter of the total power re-

mains to be transmitted. In other words, full power goes

through the transmission line at the first element location,

and the power diminishes as it travels toward the last el-
ement. Consequently, the largest loss in total power for

the transmission line occurs at the first element, and this

power loss reduces as the power travels down the series-

fed line. For this reason, most of the insertion loss occurs

at the center region of the array, shown in Fig. 7. For a

parallel-fed array, all elements are fed equally at the same

time by parallel transmission lines. Therefore, the inser-

tion loss exists almost uniformly from the beginning of the
transmission line all the way to the end of the line. Thus,

the series-fed array will encounter significantly less inser-

tion loss than will the parallel-fed array.

Note that at each power division point in Fig. 7 the mi-

crostrip line changes width. This was uniquely designed to
ensure uniform power distribution with proper impedance

matches throughout the array. It should be noted that the

microstrip lines are impedance matched at every junction

point throughout the array so that multiple reflections of

the signal are minimized to reduce insertion loss. Further-
more, the bandwidth of this array is slightly larger than

the conventional "resonant" array, in which impedances

are not matched and multiply reflected signals are sig-

nificant. For the array in Fig. 7, the spacings between

adjacent columns in the horizontal direction and between

adjacent subarrays in the vertical direction are all integral

multiples of the "guide" wavelength, so that the far-field
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radiation from all patches is in phase in the broadside di-

rection. Here the guide wavelength is the effective wave-

length of the transmission line in a dielectric substrate.
Two guide wavelengths are used here so that they are long

enough to physically accommodate the subarrays and yet

short enough to avoid excess insertion loss. Because of

this guide wavelength requirement for phase coherence, the

spacing between two adjacent patch elements becomes ap-

proximately 0.74 free-space wavelength. Also, because the

guide wavelengths are slightly different for different trans-
mission line widths, the spacing between adjacent patches

is slightly different throughout the array (not all exactly
equal to 0.74 free-space wavelength). This is why not all

the patch elements in any given vertical column or hori-

zontal row are precisely aligned. In the array, there are a
total of 8 vertical columns with 6 subarrays in each col-

umn, and, therefore, there are a total of 48 sequentially

arranged subarrays with a total of 192 microstrip patch
elements.

Due to the fact that the array must have integral mul-

tiple numbers of subarrays and prcferably be symmetri-

cally fed from the center, it is not possible to have a
square aperture and yet still fully utilize the required

10-cm x 10-cm area (see Fig. 7). Consequently, a rect-

angular aperture is formed. The overall antenna phys-
ical size is 11.4 cm × 8.9 cm. The microstrip patches

and lines are etched on a 0.025-cm-thick dielectric sub-

strate (Duroid 5880), which in turn is mounted on a 0.16-

cm-thiek supporting aluminum plate. The total antenna
thickness is 0.185 cm. The array's actual radiating aper-

ture size (10.8 cm x 8.3 cm) is slightly smaller than its

physical size. This is because additional ground planes

on the edges of the array are needed to accommodate the
transmission lines.

The power distribution circuit for the full array is a
combination of parallel- and series-feed [4] transmission

lines. It will not be a good design if a sole series-feed

technique is used. This is because a sole series-fed array

will cause its main beam to be scanned away from the

intended direction as frequency is changed due to accu-

mulated phase change. With a relatively wide band sig-

nal, the composite transmit beam of all the frequencies
within the band will appear to be wider and the gain at
the receiver direction will thus be lower. Viewed another

way, the spectrum of the antenna filter response will be
distorted. For the array shown in Fig. 7, the right and

left halves of the array are fed in parallel, while within

each half array, the columns are fed serially. As frequency

changes, the beam of each half array will scan. However,

the two half arrays will scan in opposite directions, leav-

ing the composite beam pointed in the broadside direction

with a lower gain. Because the beamwidth of each half ar-
ray is wider than the complete array, its beam scan due to

frequency changes will result in smaller gain changes than

that of a narrowbeam, solely series-fed array. To summa-

rize, this combined parallel and series feed technique will

result in a stable beam direction over a relatively wide

bandwidth with a relatively low insertion loss.

V. Experimental Results

The full array, as sketched in Pig. 7, has been fabri-

cated and tested and is shown in Fig. 9. The input is a

perpendicularly launched OS-50 coax connector. Its mea-

sured input return loss is given in Fig. 10, where a return

loss of -23.6 dB (1.14:1 VSWR) is noted at 32 GHz. The
1.5:1 VSWR bandwidth is about 2 GHz, which is signifi-

cantly wider than the four-element subarray's bandwidth

of 0.5 GHz. This is partly because the full array's input

match is better designed and partly due to the fact that

the full array has a much larger resistive insertion loss in

the transmission lines to lower the returned energy. One

can note that in Fig. 9 there are two tuning stubs located

a quarter-wavelength away from the input connector and
that there is none for the four-element subarray. These

tuning stubs can eliminate a large portion of the mismatch

over a significant bandwidth.

Both the measured narrowbeam and broadbeam prin-

cipal p]ane patterns of the rectangular aperture array

are shown in Figs. ll and 12, respectively. The 3-dB

beamwidths are 4.5 deg in one principal plane and 5.7 deg

in the orthogonal plane. These patterns, measured at

32 GHz, show a peak side-lobe level of -12 dB and a

peak cross-pol level of -18 dB (corresponding to a 2-dB
axial ratio). It is believed that the 2-dB axial ratio, which
is worse than that of the four-element subarray, is mostly

caused by the accumulated phase errors in the series-fed
microstrip lines and is partly due to the leakage radiation
from these lines. The measured 3-dB axial ratio band-

width of the full array is 1.3 Gttz. The array's peak gain

is 28.4 dBic, which was measured using a standard gain

horn by the comparison method. Based on the radiating

aperture size of 10.8 cmx 8.3 cm, the calculated directiv-

ity of a uniformly distributed array should be 31.0 dBic.
This implies that the array has an overall efficiency of 55

percent with a total loss of 2.6 dB. The loss is mostly the

result of the microstrip transmission line's ohmic losses

(1.0 to 1.5 dB), which occurred in the substrate dielec-

tric and in the copper conductor. The remaining portions
of the loss are mismatch loss, cross-pol loss, side-lobe loss,

patch element loss, and input connector loss. The cross-pol

and side-lobe losses are partly due to imperfect design and
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partly caused by radiation leakage from the transmission

lines. It is expected that the overall loss would be signifi-

cantly higher if the series-fed technique and the single-fed

CP patch were not used. The antenna gain was also mea-

sured across a frequency bandwidth, which demonstrated

that the array has a bandwidth of 0.95 GHz with 1 dB of

maximum gain drop. The antenna's total mass, including

the aluminum supporting plate, is 0.053 kg (1.88 oz). The

characteristics and performance of the array antenna are
summarized in Table 2.

Vl. Conclusions

A 32-GHz circularly polarized microstrip array with 192

patch elements has been successfully developed for the mi-

crospacecraft application. It is intended as a downlink

telecommunication spacecraft antenna. Each patch ele-

ment is circularly polarized with a single feed and two
truncated corners.

The stability and quality of the circular polarization is

improved by arranging four adjacent elements in a sequen-

tial fashion. Thus, the full array consists of 48 identical

four-element subarrays. To minimize the insertion loss,

these subarrays are combined primarily by series-feed mi-

crostrip transmission lines, and impedances are matched

throughout the array. The antenna achieved the required

gain of 28 dBic with a physical size of 11.4 cm x 8.9 cm

and a thickness of 0.18 cm. Due to its low profile, the ar-

ray antenna is to be surface-mounted along with the solar

panels. The total antenna mass is only 0.053 kg (1.88 oz).

The antenna has achieved the goal of occupying very little

of the volume and mass of the spacecraft.
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Table 1. ACME-II antenna requirements.

Parameter Requirement

Frequency, GHz 32

Operation Downlink transmit only

Gain, dBic >28

Polarization Right-hand circular

Side-lobe level, dB <-13

Cross-pol level, dB < - 15

Beam direction Fixed broadside

Input VSWR at 32 GHz <1.5:1

Bandwidth, GHz >1

Power handling, W 5

Antenna mass, kg _<0.5

Aperture size, cm 10 x 10

Table 2. Characteristics and performance of the array antenna.

Characteristic
Parameter Requirement

or performance

Center frequency, GHz 32 32

Input VSWR at 32 GHz 1.14:1 1.5:1

1.5:1 VSWR bandwidth, GHz 2 1

Peak gain, dBic 28.4 28.0

-1-dB gain bandwidth, GHz 0.95 1.0

Beamwidth, deg 5.7 x 4.5 ,_5 x 5

Peak side-lobe level, dB -12 -13

Polarization Right-hand CP Right-hand CP

3-dB axial ratio bandwidth, GHz 1.3 1

Radiating aperture size, cm 10.8 X 8.3 _<lO x 10

Physical size, cm 11.4 x 8.9 <10 x 10

Antenna thickness, cm 0.18 Not specified

Antenna mass, kg 0.053 _<0.5

Power handling, W Expected 10 5
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Fig. 1. ACME-II microspacecraft configuration.
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Fig. 2. Circularly polarized single-patch antenna with (a)

orthogonal dual feeds and (b) single feed with truncated

comers.
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Fig. 3. The circularly polarized single-feed patch.
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Fig. 4. The circularly polarized four-element subarray with

sequential arrangement.
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Fig.5.Thesequentiallyarrangedfour-elementsubarray,
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Fig. 6. Measured spinnlng-linear pattern of the four-element

subarray.
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Fig. 7. The full array design.
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(b)

I I

Fig. 8. Comparison of the microstrip (a) series-feed and
(b) parallel-feed techniques with a four-element array.
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Fig. 9. The 32-GHz full array with 192 patch elements.
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Fig. 10. Measured Input return loss of the full array.
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Fig. 11. Measured narrow-beam principal-plane pattern of the

full array.
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Fig. 12. Measured broad-beam principal-plane pattern of the

full array.
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